| 1. |
If \(\frac{{2 - \sqrt 5 }}{{2 + \sqrt 5 }} = a\) and \(\frac{{2 + \sqrt 5 }}{{2 - \sqrt 5 }} = b\) then, the value of a2 - b2 is:1. 12√52. -144√53. 62√54. 5√5 |
|
Answer» Correct Answer - Option 2 : -144√5 Given: a = \(\frac{{2\; - \;\sqrt 5 }}{{2\; + \;\sqrt 5 }}\) b = \(\frac{{2\; + \;\sqrt 5 }}{{2\; - \;\sqrt 5 }}\) Formula Used: a2 – b2 = (a + b) (a – b) (a + b)2 = a2 + b2 + 2ab (a – b)2 = a2 + b2 – 2ab Calculation: a + b = \(\frac{{2\; - \;\sqrt 5 }}{{2\; + \;\sqrt 5 }}\) + \(\frac{{2\; + \;\sqrt 5 }}{{2\; - \;\sqrt 5 }}\) ⇒ a + b = \(\frac{{{{\left( {2\; - \;\sqrt 5 } \right)}^2}\; + \;{{\left( {2\; + \;\sqrt 5 } \right)}^2}}}{{\left( {2\; + \;\sqrt 5 } \right)\left( {2\; - \;\sqrt 5 } \right)}}\) ⇒ a + b = \(\frac{{4\; + \;5\; - \;4\sqrt 5 \; + \;4\; + \;5\; + \;\;4\sqrt 5 }}{{4\; - \;5}}\) ⇒ a + b = 18/(–1) ⇒ a + b = (–18) a – b = \(\frac{{2\; - \;\sqrt 5 }}{{2\; + \;\sqrt 5 }}\) – \(\frac{{2\; + \;\sqrt 5 }}{{2\; - \;\sqrt 5 }}\) ⇒ a – b = \(\frac{{{{\left( {2\; - \;\sqrt 5 } \right)}^2}\; - \;{{\left( {2\; + \;\sqrt 5 } \right)}^2}}}{{\left( {2\; + \;\sqrt 5 } \right)\left( {2\; - \;\sqrt 5 } \right)}}\) ⇒ a – b = \(\frac{{4\; + \;5\; - \;4\sqrt 5 \; - \;\left( {4\; + \;5\; + \;4\sqrt 5 \;} \right)}}{{4\; - \;5}}\) ⇒ a – b = (–8√ 5 )/(–1) ⇒ a – b = 8√ 5 a2 – b2 = (–18) × (8√5) ⇒ a2 – b2 = (–144√5) ∴ The value of a2 – b2 is –144√5 |
|