Saved Bookmarks
| 1. |
If `f(x+y+1)={sqrt(f(x))+sqrt(f(y))}^2`and `f(0)=1AAx ,y in R ,d e t e r m in ef(n),n in Ndot` |
|
Answer» Correct Answer - `f(n)=(n+1)^(2)` Given `f(x+y+1)=(sqrt(f(x))+sqrt(f(y)))^(2)` Putting `x=y=0,` we get `f(1)=(sqrt(f(0))+sqrt(f(0)))^(2)=(1+1)^(2)=2^(2)` Again putting `x=0,y=1` we get `f(2)=(sqrt(f(0))+sqrt(f(1)))^(2)=(1+2)^(2)=3^(2)` and for `x=1,y=1,` we get `f(3)=(sqrt(f(1))+sqrt(f(1)))^(2)=(2+2)^(2)=4^(2)` Hence, `f(n)=(n+1)^(2)`. |
|