Saved Bookmarks
| 1. |
if `f(x)=(a-x^n)^(1/n),` where `a > 0 and n` is a positive integer, then `f(f(x))=`(i) `x^3`(ii) `x^2`(iii) `x`(iv) `-x` |
|
Answer» Correct Answer - 1 Given, `f(x)=(a-x^(n))^(1//n)` `rArr f[f(x)]=[a-{(a-x^(n))^(1//n)}^(n)]^(1//n)=(x^(n))^(1//n)=x` ` therefore f[f(x)]=x` Hence, given statement is true. |
|