1.

if `f(x)=(a-x^n)^(1/n),` where `a > 0 and n` is a positive integer, then `f(f(x))=`(i) `x^3`(ii) `x^2`(iii) `x`(iv) `-x`

Answer» Correct Answer - 1
Given, `f(x)=(a-x^(n))^(1//n)`
`rArr f[f(x)]=[a-{(a-x^(n))^(1//n)}^(n)]^(1//n)=(x^(n))^(1//n)=x`
` therefore f[f(x)]=x`
Hence, given statement is true.


Discussion

No Comment Found