| 1. |
If \( f(x+5)=x^{2}-5 x+7 \) find \( f(x) \) A. \( f(x)=x^{2}-15 x+37 \)B. \( f(x)=x^{2}+15 x+57 \) C. \( f(x)=x^{2}-15 x+37 \)D. \( f(x)=x^{2}-15 x+57 \) |
|
Answer» Correct answer is:- (D) f(x) = x2 - 15x + 57 Explanation:- Let, f(x) = ax2 + bx + c... (1) Now, f(x + 5) = a(x + 5)2 + b(x + 5) + c x2 - 5x + 7 = ax2 +10ax + 25a + bx + 5b + c. Comparing the coefficient of x2, we get a = 1, x2 - 5x + 7 = x2 + 10x + 25 + bx + 5b + c -15x - 18 = bx + 5b + c, Comparing the coefficient of x, we get b = -15, -15x - 18 = -15x - 75 + c c = 57. Putting the values of a, b and c in (1) we get, f(x) = x2 - 15x + 57. Therefore, the required polynomial is x2 - 15x + 57 (D) x2 - 15x + 57 f(x + 5) = x2 - 5x + 7 \(\therefore\) f(x) = (x - 5)2 - 5(x - 5) + 7 (By taking x -5 as x) = x2 - 10x + 25 - 5x + 25 + 7 = x2 - 15x + 57 |
|