Saved Bookmarks
| 1. |
If `(dy)/(dx)=y+3 and y(0)=2`, then y(ln 2) is equal toA. 7B. 5C. 13D. `-2` |
|
Answer» Correct Answer - A We have, `(dy)/(dx)=y+3` `rArr" "(1)/(y+3)dy=dx` `rArr" "int(1)/(y+3)dy=int 1.dx` `rArr" "log(y+3)=x+C" …(1)"` It is givne that y(0) = 2 i.e. y = 2 when x = 0. `therefore" "log 5 =C" [Putting y = 2, x = 0 in (i)]"` Substituting the value of C in (i), we get `log(y+3)=x+log5` Putting x = ln 2, we get `y+3=5e^(log2)rArr y+3=10rArr y = 7` |
|