Saved Bookmarks
| 1. |
If `d_1 and d_2` are the longest and shortest distance of `(-7,2)` from any point `(x,R)` on the curve whose `sum_a^x` is `x^2+y^2-10x-14y=15` then find GM of `d_1 and d_2` |
|
Answer» P(-7,2) C:`x^2+y^2-10x-14y=51` `(x-5)^2(y-19/2)^2=51+25+(19/2)^2` `(x-5)^2+(y-19/2)^2=76+361/4` `(x-5)^2+(y-19/2)^2=665/4` `C(5,19/2)` `(PA)_(min)=PC-r=d_1` `(PB)_(max)=PC+r=d_2` `d_1+d_2=2PC` `=2sqrt((-7-5)^2+(2-19/2)^2)` `=2sqrt(12^2+225/4)` `=sqrt801`. |
|