1.

If `d_1 and d_2` are the longest and shortest distance of `(-7,2)` from any point `(x,R)` on the curve whose `sum_a^x` is `x^2+y^2-10x-14y=15` then find GM of `d_1 and d_2`

Answer» P(-7,2)
C:`x^2+y^2-10x-14y=51`
`(x-5)^2(y-19/2)^2=51+25+(19/2)^2`
`(x-5)^2+(y-19/2)^2=76+361/4`
`(x-5)^2+(y-19/2)^2=665/4`
`C(5,19/2)`
`(PA)_(min)=PC-r=d_1`
`(PB)_(max)=PC+r=d_2`
`d_1+d_2=2PC`
`=2sqrt((-7-5)^2+(2-19/2)^2)`
`=2sqrt(12^2+225/4)`
`=sqrt801`.


Discussion

No Comment Found

Related InterviewSolutions