Saved Bookmarks
| 1. |
If cot A = k, then sin A is equal to:(presume that A is an acute angle)1. \(\frac{k^2}{\sqrt {1+k^2}}\)2. \(\frac{1}{k}\)3. \(-\frac{1}{k}\)4. \(\frac{1}{\sqrt {1+k^2}}\) |
|
Answer» Correct Answer - Option 4 : \(\frac{1}{\sqrt {1+k^2}}\) Given: cot A = k Formula: cot A = Base/Perpendicular sin A = Perpendicular/Hypotenuse (Hypotenuse)2 = (Base)2 + (Perpendicular)2 Calculation: cot A = k/1 ⇒ Base/Perpendicular = k/1 ⇒ Base = k and Perpendicular = 1 (Hypotenuse)2 = (Base)2 + (Perpendicular)2 ⇒ (Hypotenuse)2 = k2 + 12 ⇒ Hypotenuse = √(1 + K2) Now, sin A = 1/√(1 + k2) |
|