1.

If `cosec^(-1)x+cosec^(-1)y+cosec^(-1)z=-(3pi)/(2),then x/y+y/z+z/x=`A. 1B. `-3`C. 3D. `3/2`

Answer» We know that the minimum value of `cosec^(-1)x is -(pi)/(2)` which is attained at x=-1
`therefore cosec^(-1)+cosec^(-1)y+cosec^(-1)z=-(3pi)/(2)`
`rarr cos^(-1)x+cosec^(-1)+cosec^(-1)z=(-pi)/(2)+(-pi)/(2)+(pi)/(2)`
`rarr x=-1,y=-1z=-1`
`therefore x/y+y/z+z/x=(-1)/(-1)+(-1)/(-1)+(-1)/(-1)=3`


Discussion

No Comment Found