Saved Bookmarks
| 1. |
if `(cosalpha)/(cosbeta)=a and (sinalpha)/(sinbeta)=b`, then the value of `sin^(2)beta` in terms of a and b isA. `(a^(2+1))/(a^(2)-b^(2))`B. `(a^(2)-b^(2))/(a^(2)+b^(2))`C. `(a^(2)-1)/(a^(2)-b^(2))`D. `(a^(2)-1)/(a^(2)+b^(2))` |
|
Answer» Correct Answer - c `(cos alpha)/(cos beta)=arArr cos alpha=a cos beta` On squaring both sides `cos^(2)alpha=a^(2)cos^(2)beta` `rArr1-sin^(2)alpha=a^(2)(1-sin^(2)beta)` .........i Again `sin alpha=6sin beta` Squaring both sides `rARrsin^(2)alpha=b^(2)sin^(2)beta` put the value of `sin^(2)alpha` in equation (i) `1-b^(2)sin^(2)beta=a^(2)-a^(2)sin^(2)beta` `a^(2)-1=a^(2)sin^(2)beta-b^(2)sin^(2)beta` `a^(2)-1=sin^(2)beta(a^(2)-b^(2))` `rArr sin^(2)beta=(a^(2)-1)/(a^(2)-b^( 2))` |
|