1.

If cos Ɵ = √3/2 and 0° < Ɵ < 90°, then the value of cosec (Ɵ – 15°) is1). 12). √2 + √63). 1/√34). √2

Answer»

If COS ? = √3/2

⇒ ? = 30°

COSEC (? – 15°) = cosec (30° – 15°) = cosec 15° = 1/(sin 15°)

 Since sin 15° = sin (45° – 30°) = sin 45° cos 30° – cos 45° sin 30°

(? sin (A – B) = sin A cos B – cos A sin B)

∴ sin 15° $(= \frac{1}{{\sqrt 2 }} \times \frac{{\sqrt 3 }}{2} - \frac{1}{{\sqrt 2 }} \times \frac{1}{2} = \frac{{\sqrt 3 \;-1}}{{2\sqrt 2 }})$ 

⇒ cosec 15° = $(\frac{{2\sqrt 2 }}{{\sqrt 3 - 1}} = \frac{{2\sqrt 2 }}{{\sqrt 3 - 1}} \times \frac{{\sqrt 3 + 1}}{{\sqrt 3 + 1}} = \;\frac{{2\sqrt 6 + 2\sqrt 2 }}{{3 - 1}} = \sqrt 2 + \sqrt 6 )$


Discussion

No Comment Found