1.

If `cos^(-1)x+cos^(-1)y+cos^(-1)z=pi`, thenA. `x^(2)+y^(2)=z^(2)`B. `x^(2)+y^(2)+z^(2)=0`C. `x^(2)+y^(2)+z^(2)=1-2xyz`D. None of these

Answer» Correct Answer - C
Given `cos^(-1)x+cos^(-1)y+cos^(-1)z=pi`
`implies cos^(-1)(xy-sqrt(1-x^(2))sqrt(1-y^(2)))=pi-cos^(-1)z`
`implies xy-sqrt(1-x^(2))sqrt(1-y^(2))=cos (pi-cos^(-1)z)`
`=-cos(cos^(-1z))=0`
`implies xy+z=sqrt(1-x^(2))sqrt(1-y^(2))`
`implies x^(2)y^(2)+z^(2)+2xyz =(1-x^(2))(1-y^(2))`
`=1-x^(2)-y^(2)+x^(2)y^(2)`
`implies x^(2)+y^(2)+z^(2)=1-2xyz`


Discussion

No Comment Found

Related InterviewSolutions