| 1. |
If ∇= \(\begin{bmatrix}a_{11} & a_{12} & a_{13} \\[0.3em]a_{21} & a_{22} & a_{23} \\[0.3em]a_{31} & a_{32} & a_{33}\end{bmatrix}\) and Aij is co- factors of aij, then ∇ is equal to what? |
|
Answer» if ∇ =\(\begin{bmatrix} a_{11} & a_{12} & a_{13} \\[0.3em] a_{21} & a_{22} & a_{23} \\[0.3em] a_{31} & a_{32} & a_{33} \end{bmatrix}\) and Aij is co- factors of aij. ⇒ ∇= a11\(\begin{bmatrix} a_{22} & a_{23} \\[0.3em] a_{32} & a_{33} \end{bmatrix}\) - a12\(\begin{bmatrix} a_{21} & a_{23} \\[0.3em] a_{31} & a_{33} \end{bmatrix}\)+ a13\(\begin{bmatrix} a_{21} & a_{22} \\[0.3em] a_{31} & a_{32} \end{bmatrix}\)(By expanding determinant along row R1) ⇒ ∇= a11(-1)1+1\(\begin{bmatrix} a_{22} & a_{23} \\[0.3em] a_{32} & a_{33} \end{bmatrix}\) - a12(−1) 1+2\(\begin{bmatrix} a_{21} & a_{23} \\[0.3em] a_{31} & a_{33} \end{bmatrix}\)+ a13(−1)1+1 \(\begin{bmatrix} a_{21} & a_{22} \\[0.3em] a_{31} & a_{32} \end{bmatrix}\). ⇒ ∇= a11A11 + a12A12 + a13A13. (By definition of cofactor of element of matrix. ) Also, if we expanding determinant along row R2, we get ∇= a21A21 + a22A22 + a23A23. And if we expanding determinant along row R3, we get ∇= a31A31 + a32A32 + a33A33. Therefore, we can write ∇ as ∇= ai1Ai1 + ai2Ai2 + ai3Ai3, where 1 ≤ i≤ 3. Therefore, ∇ = \(\sum_{j}^{3}\) aijAij , where 1 ≤ i ≤ 3. |
|