Saved Bookmarks
| 1. |
If `bar(OA)= hat(i) +3hat(J)-2hat(K), "then" bar(OC)` which bisects the angle AOB is given by:A. `hat(i)-hat(J)-hat(K)`B. `hat(i)+hat(J)+hat(K)`C. `hat(-i)+hat(J)-hat(K)`D. `hat(i)+hat(J)-hat(K)` |
|
Answer» Correct Answer - 4 We know that internal bisector of the angle between the vectors bara and barb is `therefore barOC = lambdabar(OA+barOB)` `=lambda[hati+3hatj-2hatk)//sqrt(14)+(3hatj+hatj-2hatk)//sqrt(14)]` `={lambda//sqrt(14)}(4hati + 4 hatj- 4 hat k)` ={4lamba//sqrt(14)}(hati+hatj-hatk)` `"Taking" lambda = sqrt(14)//4barOC "can be taken as" (hati +hat j-hatk)` |
|