Saved Bookmarks
| 1. |
If `[alphabetagamma-alpha]`is to be square root of two-rowed unit matrix, then `alpha,betaa n dgamma`should satisfy therelation.`1-alpha^2+betagamma=0`b. `alpha^2+betagamma=0`c. `1+alpha^2+betagamma=0`d. `1-alpha^2-betagamma=0`A. `1-alpha^(2)+beta gamma=0`B. `alpha^(2)+beta gamma-1=0`C. `1+alpha^(2)+beta gamma=0`D. `1-alpha^(2)-beta gamma=0` |
|
Answer» Correct Answer - B We have `[(alpha,beta),(gamma,-alpha)][(alpha,beta),(gamma,-alpha)]=[(1,0),(0,1)]` or `[(alpha^(2)+beta gamma,0),(0,alpha^(2)+beta gamma)]=[(1,0),(0,1)]` or `alpha^(2)+beta gamma-1=0` |
|