1.

If \( \alpha, \beta, \gamma \) are the roots of the quadratic equation \( x^{3}-p x^{2}+q x-r=0 \), then the value of \( \sum \alpha^{2} \beta \) is equal

Answer»

α β and γ are roots of cubic equation x3 - px2 + qx - r = 0

\(\therefore\) sum of roots = \(\cfrac{-(-p)}1\) = p

\(\therefore\) α + β + γ = p....(1)

sum of product of two roots = q/1 = q

\(\therefore\) αβ + βγ + γα = q....(2)

products of roots = \(\cfrac{-(-r)}1\) = r

\(\therefore\) αβγ = r....(3)

multiplying (1) and (2) we get

pq = ( α + β + γ) (αβ + βγ + γα)

= pq = α2β + αβγ + α2γ + αβ2+ β2γ + αβγ + αβγ + βγ2 +γ2α

= (α2β + β2γ + α2γ + α2γ + γ2β + β2α) + 3αβγ

\(\sum\)= α2β + 3r

(\(\because\) r = αβγ)

\(\sum\) α2β = pq -3r



Discussion

No Comment Found

Related InterviewSolutions