Saved Bookmarks
| 1. |
If `alpha and beta "are the roots of the quadratic equation" ax^(2) +bx+c=0`, then `lim_(xrarr(1)/(alpha)sqrt(1-(cos ex^(2) + bx +a)/(2(1-alphax)^(2)))=`A. `|(c )/(2alpha)((1)/(alpha)-(1)/(beta))|`B. `|(c )/(2beta)((1)/(alpha)-(1)/(beta))|`C. `|(c )/(2beta)((1)/(alpha)-(1)/(beta))|`D. None of these |
|
Answer» Correct Answer - 1 `ax^(2)+bx+c rarr roots are alpha,beta` `cx^(2) + bx + a rarr "roots are" (1)/(alpha), (1)/(beta)` `underset(xrarrl//alpha)limsqrt(1-cos c(x-1//alpha)(x-1//beta).C^(2)(x-1//beta)^(2))/(2a^(2)(x-1//alpha)a^(2)(x-1//beta)^(2))c^(2)` `=underset(xrarr//a)limsqrt((1)/(2).(1)/(2alpha^(2))c^(2)(x-1//beta))^(2)` `1/2.|c/alpha|1/alpha-1/beta|` |
|