1.

If ABC and BDE are two equilateral triangles such that D is the mid-point of BC, then find ar (ΔABC) : ar (ΔBDE)

Answer»

ΔABC and ΔBDE are equilateral triangles

We know that,

Area of equilateral triangle = \(\frac{\sqrt3}{4}a^2\) 

D is the mid-point of BC then,

Area (ΔBDE) = \(\frac{\sqrt3}{4}\) x \((\frac{a}{2})^2\)

 = \(\frac{\sqrt3}{4}\) x \(\frac{a\times a}{2}\)

Now, 

Area (ΔABC) : Area (ΔBDE)

\(\frac{\sqrt3}{4}\) x a\(\frac{\sqrt3}{4}\) x \(\frac{a\times a}{2}\)

1 : \(\frac{1}{4}\)

4: 1 

Hence,

Area (ΔABC) : Area (ΔBDE) is 4: 1



Discussion

No Comment Found