1.

If `aa n dc`are the lengths of segments of any focal chord of the parabola `y^2=b x ,(b >0),`then the roots of the equation `a x^2+b x+c=0`arereal and distinct(b) real and equalimaginary(d) none of theseA. real and distinctB. real and equalC. imaginaryD. none of these

Answer» Correct Answer - C
(3) The latus rectum of `y^(2)=2bx` is 2b.
The semi-latus rectum is the HM of the segments of focal chord. Then,
`2x(t_(1)t_(2)+1)+2a(t_(1)t_(2)+1)+0`
`or(x+a)(1+t_(1)t_(2))=0`
`orx+a=0`
Now, for `ax^(2)+bx+c=0`
`D=b^(2)-4ac=((2ac)/(a+c))^(2)-4ac`
`=-4ac((a^(2)+c^(2)-ac)/((a+c)^(2)))lt0`
Hence, the roots are imaginary.


Discussion

No Comment Found

Related InterviewSolutions