Saved Bookmarks
| 1. |
If \( A=\left[\begin{array}{ll}3 & -2 \\ \lambda & -2\end{array}\right] \), find the value of \( \lambda \) so that \( A^{2}=\lambda A + 4 I \). |
|
Answer» A = \(\begin{bmatrix}3&-2\\ \lambda&-2\end{bmatrix}\) A2 = \(\begin{bmatrix}3&-2\\ \lambda&-2\end{bmatrix}\) \(\begin{bmatrix}3&-2\\ \lambda&-2\end{bmatrix}\) = \(\begin{bmatrix}9-2\lambda&-2\\ \lambda&-2\lambda+4\end{bmatrix}\) ⇒ \(\begin{bmatrix}9-2\lambda&-2\\ \lambda&-2\lambda+4\end{bmatrix}\) = \(\begin{bmatrix}9-2\lambda&-2\\ \lambda&-2\lambda+4\end{bmatrix}\) \(\therefore\) -2\(\lambda\) = -2 ⇒ \(\lambda=1\) |
|