1.

If `a f(x+1)+b f(1/(x+1))=x,x !=-1,a != b,`then `f(2)` is equal toA. `f(2)=(2a+b)/(2(a^(2)-b^(2))`B. `f(1)=0`C. `f((1)/(2))=(a+2b)/(a^(2)-b^(2))`D. `f(2)=(2a+b)/((a^(2)-b^(2)))`

Answer» Correct Answer - A::B
`af(x+1)+bf((1)/(x+1))=(x+1)-1` ..(i)
`af((1)/(x+1))+bf(x+1)=(1)/(x+1)=-1` . . .(ii)
`(1)xxa-(2)xxbimplies(a^(2)-b^(2))f(x+1)`
`=a(x+1)-a-(b)/(x+1)+b`
putting `x=1,f(2)=(2a+b)/(2(a^(2)-b^(2)))`


Discussion

No Comment Found

Related InterviewSolutions