1.

If a, b, c are in G.P., prove that log a, log b, log c are in A.P.

Answer»

If a, b, c are in GP 

⇒ \(\frac{b}{a} = \frac{c}{b}\) common ratio  .....(i) 

We know, 

log a – log b =  log \(\frac{b}{a}\) {property of logarithm} 

and according to equation (i) 

⇒ log \(\frac{b}{a}\) = log \(\frac{c}{b}\)

⇒ log b – log a = log c – log b 

⇒ 2 log b = log a + log c {property of arithmetic mean}

Hence they are in AP. …proved



Discussion

No Comment Found

Related InterviewSolutions