1.

If a + b + c = 9 and ab + bc + ac = 26, find the value of a3 + b3 + c3 - 3abc. 

Answer»

We have a + b + c = 9 ...(i) 

⇒ (a + b + c)2 = 81 [On squaring both sides of (i)] 

⇒ a2 + b2 + c2 + 2(ab + bc + ac) = 81 

⇒ a2 + b2 + c2 + 2 × 26 = 81 [∵ab + bc + ac = 26] 

⇒ a2 + b2 + c2 = (81 - 52) 

⇒ a2 + b2 + 2 = 29. 

Now, we have

a3 + b3 + c3 - 3abc = (a + b + c) (a2 + b2 + c2 - ab - bc - ac) 

 = (a + b + c) [(a2 + b2 + c2 ) - (ab + bc + ac)] 

 = 9 × [(29 - 26)] 

 = (9 × 3) 

 = 27



Discussion

No Comment Found