Saved Bookmarks
| 1. |
If a + b + c = 9 and ab + bc + ac = 26, find the value of a3 + b3 + c3 - 3abc. |
|
Answer» We have a + b + c = 9 ...(i) ⇒ (a + b + c)2 = 81 [On squaring both sides of (i)] ⇒ a2 + b2 + c2 + 2(ab + bc + ac) = 81 ⇒ a2 + b2 + c2 + 2 × 26 = 81 [∵ab + bc + ac = 26] ⇒ a2 + b2 + c2 = (81 - 52) ⇒ a2 + b2 + 2 = 29. Now, we have a3 + b3 + c3 - 3abc = (a + b + c) (a2 + b2 + c2 - ab - bc - ac) = (a + b + c) [(a2 + b2 + c2 ) - (ab + bc + ac)] = 9 × [(29 - 26)] = (9 × 3) = 27 |
|