1.

If α, β are the zeroes of the polynomial (x2 – x – 12). Then form a quadratic equation whose zeroes are 2α and 2β.

Answer»

Given that,

α and β are zeros of the polynomial x2 – x – 12. 

The sum of zeros = α + β = \(\frac{-b}{a}\) 

= \(\frac{−(−1)}{1}\) 

= 1. 

The product of zeros = αβ 

= \(\frac{c}{a}\) 

= \(\frac{−12} {1}\) 

= −12. 

Now,

(α – β)2 = (α + β)2 – 4αβ 

= 12 – 4 × –12 

= 1 + 48 

= 49. 

⇒ α − β = ±7. 

Case I :-  α − β = 7 and 

α + β = 1. 

⇒ 2α = 8 

⇒ α = 4. 

Then,

4 + β = 1 

⇒ β = 1 − 4 

= −3. 

i.e., α = 4 and 

β = −3 .

Case II :- α − β = −7 and 

α + β = 1 

⇒ 2α = −6 

⇒ α = −3. 

Then,

−3 + β = 1 

⇒ β = 1 + 3 = 4. 

i.e., α = −3 and 

β = 4. 

Hence, 

–3 and 4 are zeros of given polynomial x2 – x – 12. 

We want to find a quadratic equation whose zeros are 2α and 2β 

i.e., quadratic equation is (x – 2α) (x – 2β) = 0 

⇒ (x − 8)(x + 6) = 0 

(∵ either α = −3 & β = 4 or α = 4 and β = −3) 

⇒ x2 − 2x − 48 = 0. 

∴ Required quadratic equation is x2 − 2x − 48 = 0.



Discussion

No Comment Found

Related InterviewSolutions