Saved Bookmarks
| 1. |
If a + b = 5 and a2 + b2 = 11,then prove that a3 + b3 = 20 |
|
Answer» Given a + b = 5 and a2 + b2 = 11 (a + b)2 = (5)2 a2 + b2 + 2ab = 25 11 + 2ab = 25 2ab = 14 ab = 7 a3 + b3 = (a + b) (a2 + b2 – ab) = 5(11 – 7) = 5 × 4 = 20 ∴ a3 + b3 = 20. |
|