Saved Bookmarks
| 1. |
If A and P are the square matrices of the same order and if P be invertible, show that the matrices A and `P^(-1)` have the same characteristic roots. |
|
Answer» Let `P^(-1)AP=B` `therefore " " |B-lambdaI|=|P^(-1)AP-lambdaI|` `=|P^(-1)AP-P^(-1)lambdaP|` `=|P^(-1)(A-lambdaI)p|` `=P^(-1)||A-lambdaI||P|` `=(1)/(|P|)|A-lambda||P|=|A-lambdaI|` |
|