1.

If A = [(2, 5), (1, 3)],\(\begin{bmatrix}2&5\\1&3\end{bmatrix}\).find adj A.

Answer»

We have matrix A = \(\begin{bmatrix}2&5\\1&3\end{bmatrix}\).

The minor of elements a11, a12, a21 and a22 of matrix A are M11 = 3, M12 = 1, M21 = 5 and M22 = 2,

respectively.

Cofactor of element a11 of matrix A is A11 = (-1)1+1M11 = 3

Cofactor of element a12 of matrix A is A12 = (-1)1+2M12 = -1

Cofactor of element a21 of matrix A is A21 = (-1)2+1M21 = -5

Cofactor of element a22 of matrix A is A22 = (-1)2+2M22 = 2.

Therefore, the cofactor matrix of matrix A is \(\begin{bmatrix}3&-1\\-5&2\end{bmatrix}\)

Therefore, the adjoint matrix of matrix A is adj A = \(\begin{bmatrix}3&-1\\-5&2\end{bmatrix}'\) = \(\begin{bmatrix}3&-5\\-1&2\end{bmatrix}\).

Hence, if A = \(\begin{bmatrix}2&5\\1&3\end{bmatrix}\). Then, adj A = \(\begin{bmatrix}3&-5\\-1&2\end{bmatrix}\).



Discussion

No Comment Found

Related InterviewSolutions