1.

If `3^(x)=4^(x-1)`, then x is equal toA. `(2log_(3) 2)/(2log_(3)2-1)`B. `(2)/(2-log_(2)3)`C. `(1)/(1-log_(4)3)`D. `(2log_(2)3)/(2log_(2)3-1)`

Answer» Correct Answer - C
`3^(x)=4^(x-1)`
Taking `log_(3)` on both sides, we get
`rArr xlog_(3) 3=(x-1)log_(3)^(4)`
`rArr x=2log_(3)2*x-log_(3)4`
`rArr x(1-2log_(3)2)= -2log_(3)2`
`rArr x=(2log_(3)2)/(2log_(3)2-1)`
`rArr x=(1)/(1-(1)/(2log_(3)2))=(1)/(1-(1)/(log_(3)4))=(1)/(1-log_(4)3)=(2)/(2-log_(2)3)`
`rArr (1)/(1-(1)/(2)log_(2)3)=(1)/(1-log_(4)3)`


Discussion

No Comment Found

Related InterviewSolutions