Saved Bookmarks
| 1. |
If(2a²+3b² ) proportional to ( ab) Then prove that (9a⁴+4b⁴ ) is proportional to ( a²b²). |
|
Answer» (2a²+3b² ) α ( ab) =>(2a²+3b² ) = k ( ab) [ k is constant] =>(2a²+3b² )^2 = k^2 ( ab)^2............(1) =>(2a²+3b² )^2-4*2a^2*3b^2 = k^2 ( ab)^2-24(ab)^2 =>(2a²-3b² )^2 =( k^2 -24)(ab)^2........(2) Dividing (1) by (2) we get (2a²+3b² )^2/(2a²-3b² )^2=k^2/(k^2-24) = a constant = m ^2 (say) So (2a²+3b² )/(2a²-3b² ) = m By componendo and dividendedo we get (2*2a²)/(2*3b² ) = (m+1)/(m-1) =>a^2/b^2=3/2*(m+1)/(m-1) =a constant =n (say) Now (9a⁴+4b⁴ )/ ( a²b²) = 9*a^2/b^2+4*b^2/a^2 = 9n+4/n = a constant So we can say (9a⁴+4b⁴ ) α ( a²b²) |
|