1.

If `(1)/(log_(2)a)+(1)/(log_(4)a)+(1)/(log_(8)a)+(1)/(log_(16)a)+….+` `(1)/(log_(2^(n))a) = (n(n+1))/(k)` then k `log_(a)2` is equal toA. 2B. 3C. 1D. 4

Answer» Correct Answer - A
`If (1)/(log_(2)a)+(1)/(log_(4)a)+(1)/(log_(8)a)` …………
Given
`log_(a)2+log_(a)2^(2)+……+log_(a)2^(n) = (n(n+1))/(k)`
`implies (1+2+3+…….+n)log_(a)2 = (n(n+1))/(k)`
`implies (n(n+1))/(2). Log_(a)2 = (n(n+1))/(k)`
`implies k. log_(a)2 = 2`


Discussion

No Comment Found

Related InterviewSolutions