Saved Bookmarks
| 1. |
I wt yt z = 0I then brove that :wº + y + z3 = Bryz |
|
Answer» Given,x+y+z=0x+y+z=0. Consider the identity, (x3+y3+z3−3xyz)=(x+y+z)(x2+y2+z2−xy−yz−zx)(x3+y3+z3−3xyz)=(x+y+z)(x2+y2+z2−xy−yz−zx). Substitutex+y+z=0x+y+z=0in above identity. x3+y3+z3−3xyz=0×(x2+y2+z2−xy−yz−zx)x3+y3+z3−3xyz=0x3+y3+z3=3xyzx3+y3+z3−3xyz=0×(x2+y2+z2−xy−yz−zx)x3+y3+z3−3xyz=0x3+y3+z3=3xyz Hence, it is proved thatx3+y3+z3=3xyz 3xyz is the right answer |
|