1.

Given a+b+cd+c=0 , which of the following statements are correct? (a) veca, vecb, vecc and vecd must each be a null vector . (b) The magnitude of (veca+vecc) equals the magnitude of (b+d) (c) The magnitude of veca can never be greater than the sum of the magnitudes of vecb, vecc and vecc. (d) vecb+vecc must lie in the plane of vec a and vecd if veca and vecd are not collinear ,and in the line of vec a and vec d, if they are collinear.

Answer»

Solution :(a) Incorrect , if is not necessary that `vec a, vecb , vecc` and `vecd` each should be a null VECTOR . `vec a +vec b+vec C +vec d ` can be ZERO by amny other ways .
(b)Correct, `vec a+vec b+vec c +vec d =vec0`
The `vec a+vecc=-(vecb+vecd)`
`|vec a +vec c|=|vecb+vecd|`
(c) Correct , `veca +vec b+vec c +vec d =0`
`vec a=-(vec b+vec c +vec d)`
Magnitude of `veca` can never be grater than
`(vec b+vec c+vec d)`
(d) `vec a+vec b+vec C+vec d=vec 0`
We can write `veca+ (vec b+vec c )+vec d=0`
Now `(vec a +vec b+vec c+vec d)` is zero only if`( vec b +vec c )` must LIE in the plane of `veca and vecd`
But if `vec a and vec d` are collinear, then `(vec b +vec c)` must lie in theline of `vec a and vec d`, only then the vectorsumofall thevectors will be zero .


Discussion

No Comment Found