Saved Bookmarks
| 1. |
Given : 9216 = 2a × 3b find the values of a and b. |
|
Answer» Firstly, we have to Prime Factorise 9216. We get 9216 = 210 x 32 Therefore, Equating both the sides, We get a = 10 and b = 2. \(\begin{array}{c|c}2&9216\\\hline 2&4608\\\hline2&2304\\\hline2&1152\\\hline2&576\\\hline2&288\\\hline2&144\\\hline2&72\\\hline2&36\\\hline2&18\\\hline3&9\\\hline3&3\\\hline&1 \end{array}\) By prime factorization of 9216, we obtain 9216 = 2 x 2 x 2 x 2 x 2 x 2 x 2 x 2 x 2 x 2 x 3 x 3 = 210 x 32 = 2a x 3b (Given) So, a = 10 & b = 2 (By comparing) |
|