1.

\(\frac{cos^3θ+sin^3θ}{cosθ+sinθ}\) + \(\frac{cos^3θ-sin^3θ}{cosθ-sinθ}\) = 2

Answer»

LHS =  \(\cfrac{cos^3θ+sin^3θ}{cosθ+sinθ}\) + \(\cfrac{cos^3θ-sin^3θ}{cosθ-sinθ}\)

\(\cfrac{(cosθ+sinθ)(cos^2θ-cosθsinθ+sin^2θ)}{cosθ+sinθ}\) + \(\cfrac{(cosθ-sinθ)(cos^2θ+cosθsinθ+sin^2θ)}{cosθ-sinθ}\)

= (cos2 θ + sin2 θ − cos θ sin θ) + (cos2 θ + sin2 θ + cos θ sin θ) 

= (1 − cos θ sin θ) + (1 + cos θ sin θ) 

= 2 

= RHS 

Hence, LHS = RHS



Discussion

No Comment Found