Saved Bookmarks
| 1. |
\( \frac{\cos 2 x}{1+\sin 2 x}=\tan (\pi / 4-x) \) |
|
Answer» LHS =Cos2x/(1+sin2x) =(Cos^2 x -sin^2 x)/(sin^2 x+ cos^2 x+2sin x cos x) Here, cos 2x= cos^2 x- sin^2 x 1=sin^2 x+cos^2 x sin 2x=2sin x cos x So, =(Cos x-sin x)(cos x+sin x)/(cos x+sin x)^2 Because we know that A^2-B^2=(A-B)(A+B) A^2+2AB+B^2=(A+B)^2 Now, Common terms cancel out =(Cos x-sin x)/(cos x+ sin x) Dividing by cos x in numerator and denominator We get =(1-sin x/cos x)/(1+sin x/cos x) =(1-tan x)/(1+tan x) RHS tan(π/4-x) Using the following formula tan(A-B)={tanA - tanB)/{1+tanAtanB) tan(π/4-x)={tan π/4 -tanx}/{1+tan π/4.tanx} tan(π/4-x)={1-tanx}/{1+tanx} Here, tan π/4=1 Hence proved |
|