1.

\( \frac{8^{x}-2^{x}}{6^{x}-3^{x}}=2 \)

Answer»

\(\frac {8^x-2^x}{6^x-3^x} = \frac {2^x(2^{2x}-1)}{3^x (2^x-1)}\)

\(\frac {2^x (2^x-1)(2^x+1)}{3^x (2^x-1)}\) 

\(\frac {2^x (2^x+1)}{3^x}\)

\(\therefore\) \(\frac {2^x (2^x+1)}{3^x}\) = 2 (Given)

\(\Rightarrow\) \(2^{2x} +2^x = 2.3^x\)

For x = 0, \(2^{2x} + 2^x = 2^0 + 2^0 = 1+1 = 2\) 

\(2.3^x = 2.3^0 = 2 \times 1 = 2\)

Hence, \(2^{2x}+2^x = 2.3^x \) then x = 0



Discussion

No Comment Found

Related InterviewSolutions