1.

For what value of α + β, the three points (α, β), (5, 0), (0, 5) will be collinear?1. 52. -253. 04. 25

Answer» Correct Answer - Option 1 : 5

Concept:

If three points are collinear then the area of the triangle formed from these 3 points will be 0.

[as the collinear points lie on the same straight line]

Analysis:

Area of triangle passing through the points

(x, y), (x2, y2) and (x3, y3) is given by:

\(A = \frac{1}{2}\left[ {x,\;\left( {{y_2} - {y_3}} \right) + {x_2}\left( {{y_3} - {y_1}} \right) + {x_3}\left( {{y_1} - {y_2}} \right)} \right]\)

(x1, y1 = α, β); (x2, y2 = 5, 0); (x3, y3 = 0, 5)

∴ \(A = \frac{1}{2}\left[ {\alpha \left( { - 5} \right) + 5\left( {5 - \beta } \right) + 0} \right]\) 

-5α + 25 – 5β = 0

α + β = 5



Discussion

No Comment Found

Related InterviewSolutions