| 1. |
For the data,\(\begin{array}{*{20}{c}} {x:}\\ {f\left( x \right):} \end{array}\begin{array}{*{20}{c}} 0\\ 5 \end{array}\begin{array}{*{20}{c}} 1\\ 2 \end{array}\begin{array}{*{20}{c}} 2\\ 1 \end{array}\begin{array}{*{20}{c}} 3\\ 3 \end{array}\begin{array}{*{20}{c}} 4\\ 7 \end{array}\)the value of \(\mathop \smallint \nolimits_0^4 2f\left( x \right)dx\) will be:1. 242. 213. 424. 12 |
||||||||||||
|
Answer» Correct Answer - Option 4 : 12 Concept: Trapezoidal rule is given by: \(\mathop \smallint \limits_{\rm{a}}^{\rm{b}} {\rm{f}}\left( {\rm{x}} \right){\rm{dx}} = \frac{{\rm{h}}}{2}\left[ {{{\rm{y}}_{\rm{o}}} + {{\rm{y}}_{\rm{n}}} + 2\left( {{{\rm{y}}_1} + {{\rm{y}}_2} + {{\rm{y}}_3}{\rm{\;}} \ldots } \right)} \right]\) \({\rm{Number\;of\;intervals(n)}} = \frac{{{\rm{b}} - {\rm{a}}}}{{\rm{h}}}{\rm{\;}}\) where b is the upper limit, a is the lower limit, h is the step size. Calculation: From question
\(I = \mathop \smallint \nolimits_0^4 2.f\left( x \right).dx\) Let f(x) = 2.f(x) ∴ \(f\left( x \right) = \frac{{f\left( x \right)}}{2}\) \(I = \mathop \smallint \nolimits_0^4 \frac{{f\left( x \right)}}{2} \cdot dx = \frac{1}{2}\mathop \smallint \nolimits_0^4 f\left( x \right) \cdot dx\) From the formula: \(\mathop \smallint \nolimits_0^4 f\left( x \right)dx = \frac{h}{2}\left[ {\left( {{y_0} + {y_4}} \right) + 2\left( {{y_1} + {y_2} + {y_3}} \right)} \right]\;\) \(= \frac{{1}}{2}\left[ {\left( {5 + 7} \right) + 2\left( {2 + 1 + 3} \right)} \right]\) ∴ \(I = \frac{{24}}{2} = 12\) |
|||||||||||||