Saved Bookmarks
| 1. |
For conservative force field, `vec(F)=-(delU)/(delx)hat(i)-(delU)/(dy)hat(j)-(delU)/(delz)hat(k)` where `Frarr` Maginitude of Force. `Urarr` Potential energy and `(delU)/(delx)=` Differentiation of `U` w.r.t. `x` keeping `y` and `z` constant and so on. Choose incorrect matching `:-`A. `(A)rarr(P,Q,R,S)`B. `(B)rarr(Q,R)`C. `(C)rarr(P,S)`D. `(D)rarr(P,R,S)` |
|
Answer» Correct Answer - D For `(A)` `:` `vec(F)=-2xyzhat(i)-x^(2)zhat(j)-x^(2)yhat(k)rArrF_(x)=0`, `F_(y)=0,F_(z)=0,U=0` For`(B)` :`vec(F)=-2xhat(i)-zhat(j)-yhat(k)rArrF_(x)ne0,F_(y)=0, F_(z)=0, Une0` For `(C )` `:` `vec(F)=-2x(y+z)hat(i)-x^(2)hat(j)-x^(2)hat(k)rArrF_(x)=0,F_(y)ne0, F_(z)ne0, U=0` For `(D)` `:` `vec(F)=-2xyhat(i)-x^(2)hat(j)-hat(k)rArrF_(x)=0,F_(y)ne0, F_(z)ne0, U=0` |
|