| 1. |
For any two sets A and B, prove the following:(i) A ∩ (A‘ ∪ B) = A ∩ B(ii) A – (A – B) = A ∩ B(iii) A ∩ (A ∪ B’) = ϕ(iv) A – B = A Δ (A ∩ B) |
|
Answer» (i) A ∩ (A’ ∪ B) = A ∩ B Consider LHS A ∩ (A’ ∪ B) On expanding (A ∩ A’) ∪ (A ∩ B) As we know, (A ∩ A’) =ϕ ⇒ ϕ ∪ (A∩ B) ⇒ (A ∩ B) ∴ LHS = RHS Thus proved. (ii) A – (A – B) = A ∩ B For the any sets A and B we have De-Morgan’s law (A ∪ B)’ = A’ ∩ B’, (A ∩ B) ‘ = A’ ∪ B’ Considering LHS = A – (A–B) = A ∩ (A–B)’ = A ∩ (A∩B’)’ = A ∩ (A’ ∪ B’)’) (Here, (B’)’ = B) = A ∩ (A’ ∪ B) = (A ∩ A’) ∪ (A ∩ B) = ϕ ∪ (A ∩ B) (Here, A ∩ A’ = ϕ) = (A ∩ B) (Here, ϕ ∪ x = x, for any set) = RHS ∴ LHS=RHS Thus proved. (iii) A ∩ (A ∪ B’) = ϕ Consider LHS A ∩ (A ∪ B’) = A ∩ (A ∪ B’) = A ∩ (A’∩ B’) (By De–Morgan’s law) = (A ∩ A’) ∩ B’ (here, A ∩ A’ = ϕ) = ϕ ∩ B’ = ϕ (since, ϕ ∩ B’ = ϕ) = RHS ∴ LHS=RHS Thus proved. (iv) A – B = A Δ (A ∩ B) Consider RHS A Δ (A ∩ B) A Δ (A ∩ B) (here, E Δ F = (E–F) ∪ (F–E)) = (A – (A ∩ B)) ∪ (A ∩ B –A) (here, E – F = E ∩ F’) = (A ∩ (A ∩ B)’) ∪ (A ∩ B ∩ A’) = (A ∩ (A’ ∪ B’)) ∪ (A ∩ A’ ∩ B) (by using De-Morgan’s law and associative law) = (A ∩ A’) ∪ (A ∩ B’) ∪ (ϕ ∩ B) (by using distributive law) = ϕ ∪ (A ∩ B’) ∪ ϕ = A ∩ B’ (here, A ∩ B’ = A–B) = A – B = LHS ∴ LHS=RHS Thus proved. |
|