1.

For any square matrix A with Real numbers. Prove that A + A1 is a symmetric and A - A1 is a skew symmetric.

Answer»

Let B = A + A1 then 

B1 = (A + A1)1 = A1 + (A1)1 

= A1 + A= A + A1 = B 

∴ B1 = B ∴B is symmetric matrix 

∴ A + A1 is a symmetric matrix. 

C = A – A

C1 = (A – A1)1 = A1 – (A1)1 

= A1 – A = -(A – A1) = -C 

C1 = -C is a skew-symmetric matrix. 

∴ A – A1 is a skew-symmetric matrix.



Discussion

No Comment Found

Related InterviewSolutions