1.

For `a in R |a|gt l`, let `lim(nto oo )((1+3sqrt(2)+.....+3sqrt(n))/(n^(7//3)((1)/((an+1))+(1)/((an+2)^2)+....+(1)/((an+n)^2))))=54` Then the possible values (s) of a is/areA. -6B. 7C. 8D. -9

Answer» Correct Answer - C::D
Since,
`underset(ntoinfty)(lim)[(1+root(3)(2)+root(3)(2)+ . . .+root(3)(n))/(n^(7//3)((1)/(1n+1)^(2)+(1)/(an+2)^(2)+ . . .+(1)/((an+n)^(2))))]`
`=lim_(ntooo)(sum_(r=1)^(n)(r^1//3))/(n^(7//3)sum_(r=1)^(n)(1)/((an+r)^2))=lim_(ntooo)(sum_(r=1)^(n)((r)/(n))^(1//3)(1)/(n))/(sum_(r=1)^(n)(a+(r)/(n))^2(1)/(n))`
`=(int_(0)^(1)x^(1//3)dx)/(int_(0)^(1)(dx)/((a+x)^(2)))=54`
`implies((3)/(4)[x^(4//3)]_(0)^(1))/([-(1)/(x+a)]_(0)^(1))=54`
`implies(3//4)/(-(1)/(a+1)+(1)/(a))=54`
`implies(3)/(4xx54)=(1)/(a(a+1))impliesa^(2)+a=72`
`implies a^(2)+9a-8a-72=0`
`implies a(a+9)-8(a+9)=0`
`implies(a-8)(a+9)=0impliesa=8` or -9
Hence, opition c and d are correct.


Discussion

No Comment Found

Related InterviewSolutions