| 1. |
Following is the distribution of weights of students. Compare their coefficient of variations |
||||||||||||||||||||||||||||||||||||||||||
Answer»
We get ∑xi = 62 & ∑yi=56 There are total 5 weight groups ∴ n =5 ∴ \(\overline x = \frac {\sum x_i}{n} = \frac {62}{5} = 12.4\) \(\overline y = \frac {\sum y_i}{n} = \frac {56}{5} = 11.2\) Also we get \(\sum(x_i-\overline x)^2\) = 153.2 & \(\sum(y_i-\overline y)^2\) = 180.8 ∴ \(\overset \sigma x = \sqrt{\frac {\sum (x_i-\overline x)^2}{n}} = \sqrt{\frac {153.2}{5}} = 5.53\) \(\overset \sigma y = \sqrt{\frac {\sum (y_i-\overline y)^2}{n}} = \sqrt{\frac {180.8}{5}} = 6.013\) C.V (A) = \(\frac {\overset \sigma x} {\overline x} \times 100 = \frac {5.53}{12.4} \times 100 = 44.59\) C.V (B) = \(\frac {\overset \sigma y} {\overline y} \times 100 = \frac {6.013}{11.2} \times 100 = 53.6875\) ∴ C.V (A) < C.V (B) Weight of students of class A is more consistent. |
|||||||||||||||||||||||||||||||||||||||||||