1.

Find the volume generated by revolving the area bounded by x2 - 2x + y = 3, the y-axis and the line y = 4 about x = 0.

Answer»

 \(\because\) Revolution is about y - axis (or x = 0 line)

Volume = \(\int\limits^{y_1}_{y_2}\pi x^2\,dy\) 

Given curve is x2 - 2x + y = 3

⇒ y = 3 - x2 + 2x

= 4 - (x2 - 2x + 1)

= 4 - (x - 1)2

At x = 0 on y-axis, 

y = 4 - 1 = 3

\(\therefore\) y1 = 3, y2 = 4

\(\therefore\) Generated volume = \(\int\limits^4_3\pi x^2\,dy\)

\(=\int\limits^4_3\pi (-\sqrt{4-y}+1)\,dy\)

\(=\, ^\pi \left(\frac23(4-y)^{\frac32}+y\right)^4\)

\(= \pi \left(\frac23 \times0+4-\frac23 \times 1 -3\right)\)

\(= \pi \left(1 - \frac23\right)\)

\(= \frac {\pi}3\) cubic units.



Discussion

No Comment Found

Related InterviewSolutions