| 1. |
Find the values of k so the line \(\frac{{{\rm{x}} + 4}}{{2{\rm{}}}} = \frac{{4 - {\rm{y}}}}{-2} = \frac{{{\rm{2z}} - 4}}{{\rm 2k}}\) and \(\frac{{{\rm{x}} +3}}{\rm -k} = \frac{{\rm{y-3}}}{{\rm{2}}} = \frac{{{\rm{z}} + 1}}{5}\) are at right angles.1. 4/32. -4/33. -2/34. 2/3 |
|
Answer» Correct Answer - Option 2 : -4/3 Concept: Let the two lines have direction ratio’s a1, b1, c1 and a2, b2, c2 respectively. Condition for perpendicular lines: a1a2 + b1b2 + c1c2 = 0 Calculation: Given lines are \(\frac{{{\rm{x}} + 4}}{{2{\rm{}}}} = \frac{{4 - {\rm{y}}}}{-2} = \frac{{{\rm{2z}} - 4}}{{\rm 2k}}\) and \(\frac{{{\rm{x}} +3}}{\rm -k} = \frac{{\rm{y-3}}}{{\rm{2}}} = \frac{{{\rm{z}} + 1}}{5}\) Write the above equation of a line in the standard form of lines \( \Rightarrow \frac{{{\rm{x}} + 4}}{{2{\rm{}}}} = \frac{-{(\rm y - {\rm{4})}}}{-2} = \frac{2{{(\rm{z}} - 2)}}{{\rm 2k}} \Leftrightarrow \frac{{\left( {{\rm{x}} +4 } \right)}}{{\rm{2}}} = \frac{{{\rm{y}} - 4}}{{ 2}} = \frac{{{\rm{z}} - 2}}{{ \rm k}}\) So, the direction ratio of the first line is (2, 2, k) \(\frac{{{\rm{x}} +3}}{\rm -k} = \frac{{\rm{y-3}}}{{\rm{2}}} = \frac{{{\rm{z}} + 1}}{5}\) So, direction ratio of second line is (-k, 2, 5) Lines are perpendicular, ∴ (2 × -k) + (2 × 2) + (k × 5) = 0 ⇒ -2k + 4 + 5k = 0 ⇒ 3k + 4 = 0 ∴ k = -4/3 |
|