Saved Bookmarks
| 1. |
Find the value of sin2π/10 + sin24π/10 + sin26π/10 + sin29π/10. |
|
Answer» The answer is 0 sin2\(\frac{\pi}{10}\) + sin2\(\frac{4\pi}{10}\) + sin2\(\frac{6\pi}{10}\) + sin2\(\frac{9\pi}{10}\) = sin2\(\frac{\pi}{10}\) + sin2\(\frac{4\pi}{10}\) + sin2(\(\pi-\frac{4\pi}{10}\)) + sin2(\(\pi-\frac{\pi}{10}\)) = sin2\(\frac{\pi}{10}\) + sin2\(\frac{4\pi}{10}\) + sin2\(\frac{6\pi}{10}\) + sin2\(\frac{\pi}{10}\) = 2 ( sin2\(\frac{\pi}{10}\) + sin2\(\frac{4\pi}{10}\) ) = 2(sin2(\(\frac{\pi}{10}\)) + sin2(\(\frac\pi2-\frac\pi{10}\))) = 2 (sin2\(\frac{\pi}{10}\) + cos2\(\frac{\pi}{10}\)) = 2 x 1 = 2 (\(\because\) sin2θ + cos2θ = 1) |
|