1.

Find the value of sin2π/10 + sin24π/10 + sin26π/10 + sin29π/10.

Answer»

The answer is 0

sin2\(\frac{\pi}{10}\) + sin2\(\frac{4\pi}{10}\) + sin2\(\frac{6\pi}{10}\) + sin2\(\frac{9\pi}{10}\)

 = sin2\(\frac{\pi}{10}\) +  sin2\(\frac{4\pi}{10}\)   + sin2(\(\pi-\frac{4\pi}{10}\)) + sin2(\(\pi-\frac{\pi}{10}\))

 =  sin2\(\frac{\pi}{10}\) +  sin2\(\frac{4\pi}{10}\)  + sin2\(\frac{6\pi}{10}\) + sin2\(\frac{\pi}{10}\)

 = 2 ( sin2\(\frac{\pi}{10}\) +  sin2\(\frac{4\pi}{10}\) )

 = 2(sin2(\(\frac{\pi}{10}\)) + sin2(\(\frac\pi2-\frac\pi{10}\)))

 = 2 (sin2\(\frac{\pi}{10}\) + cos2\(\frac{\pi}{10}\))

 = 2 x 1 = 2 

(\(\because\) sin2θ + cos2θ = 1)



Discussion

No Comment Found

Related InterviewSolutions