Saved Bookmarks
| 1. |
find the value of sin18° |
|
Answer» Let \(\theta = 18°\) \(5\theta = 18° \times 5 = 90°\) ⇒ \(2\theta + 3\theta = 90°\) ⇒ \(3\theta = 90° - 2\theta\) ⇒ \(sin3\theta = sin(90° - 2\theta ) = cos2\theta\) ⇒ \(3sin \theta - 4sin^3\theta = 1 - 2sin^2 \theta\) ⇒ \(4sin^3\theta - 2sin^2\theta - 3sin\theta + 1 = 0\) Let \(sin\theta = x\) \(\therefore 4x^3 - 2x^2 - 3x + 1 = 0\) \((x - 1) (4x^2 + 2x - 1) = 0\) \(\therefore x = 1 , \frac {-2 \pm \sqrt{4 + 16} }{2\times 4}\) \(= 1, \frac{-2\pm 2\sqrt 5}8\) \(= 1, \frac{-1\pm \sqrt 5}4\) \(\because\) sin 18° is a positive value and not equal to 1. \(\therefore sin 18° = x = \frac {-1 + \sqrt 5}4\). |
|