Saved Bookmarks
| 1. |
Find the value of `1//x`for the given values of `xdot``x >3`(ii) `x |
|
Answer» (i) We have `3 lt x lt oo` `implies (1)/(3) gt (1)/(x) gt (1) /(to oo)` `implies 0 lt (1)/(x) lt (1)/(3)` (ii) We have ` -oo lt x lt -2 ` `implies (1)/(to -oo)gt (1)/(x) gt (1)/(-2)` `implies 0 gt (1)/(x) gt -(1)/(2)` `implies -(1)/(2) lt (1)/(x) lt 0` (iii) `x in (-1,3) -{0}` `implies x in (-1,0) cup (0,3)` For `x in (-1,0), ` we have `(1)/(-1) gt (1)/(x) gt (1)/(to 0^(-))` `implies -1 gt (1)/(x) gt -oo` `implies -oo lt (1)/(x) lt -1 " " `(1) For `x in (0,3), ` we have `(1)/(to 0^(+)) gt (1)/(x) gt (1)/(3)` `implies oo gt (1)/(x) gt (1)/(3)` `implies (1)/(3) lt (1)/(x) lt oo " " ` (2) From (1) and (2) , `(1)/(x) in (-oo, -1) cup ((1)/(3), oo)` |
|