Saved Bookmarks
| 1. |
Find the sum of the series 101 + 99 + 97 + .... + 47. |
|
Answer» In this case, we have to first find the number of terms. Here a = 101, l = Tn = 47, d = 99 – 101 = –2 ∴ 47 = 101 + (n – 1) × (–2), where n = number of terms ⇒ 47 = 101 – 2n +2 ⇒ 2n = 103 – 47 = 56 ⇒ n = 28 ∴ Sn = \(\frac{n}{2}\) (a + l) ⇒ S28 = \(\frac{28}{2}\) (101 + 47) = 14 × 148 = 2072. |
|