Saved Bookmarks
| 1. |
Find the square of 18i |
|
Answer» Let √18i = a + bi, where a, b ∈ R. Squaring on both sides, we get 18i = a2 + b2 i2 + 2abi 0 + 18i = a2 – b2 + 2abi …..[∵ i2= -1] Equating real and imaginary parts, we get a2 – b2 = 0 and 2ab = 18 a2 – b2 = 0 and b = \(\frac9a\) a2 - (\(\frac9a\))2 = 0 a2 - \(\frac{81}{a^2}\) = 0 a4 – 81 = 0 (a2 – 9) (a2 + 9) = 0 a2 = 9 or a2 = -9 But a ∈ R ∴ a2 ≠ -9 ∴ a2 = 9 ∴ a = ± 3 When a = 3, b = 9/3 = 3 When a = -3, b = 9/-3 = -3 \(\therefore\) √18i = ±(3 + 3i) = ±3(1 + i) |
|