1.

Find the square of 18i

Answer»

Let √18i = a + bi, where a, b ∈ R.

Squaring on both sides, we get

18i = a2 + b2 i2 + 2abi

0 + 18i = a2 – b2 + 2abi …..[∵ i2= -1]

Equating real and imaginary parts, we get

a2 – b2 = 0 and 2ab = 18

a2 – b2 = 0 and b = \(\frac9a\) 

a2 - (\(\frac9a\))2 = 0

a2 - \(\frac{81}{a^2}\) = 0

 a4 – 81 = 0

(a2 – 9) (a2 + 9) = 0

a2 = 9 or a2 = -9

But a ∈ R

∴ a2 ≠ -9

∴ a2 = 9

∴ a = ± 3

When a = 3, b = 9/3 = 3

When a = -3, b = 9/-3 = -3

\(\therefore\) √18i = ±(3 + 3i) = ±3(1 + i)



Discussion

No Comment Found