1.

Find the sine of the angle between the vectors `vec(a) =(2 hat(i) - hat(j) + 3 hat(k)) and vec(b) = (hat(i) + 3 hat(j) + 2 hat(k)).`

Answer» We have
`(vec(a) xxvec(b))= |(hat(i),hat(j),hat(k)),(2,-1,3),(1,3,2)|`
`= (-2 -9) hat(i) - (4-3)hat(j) + ( 6+1)hat(k)`
`=(-11hat(i) - hat(j) + 7 hat(k)).`
`|vec(a) xx vec(b)|=sqrt((-11)^(2)+ (-1)^(2) + 7^(2))=sqrt(171) = 3 sqrt(19)`
`|vec(a)|= sqrt(2^(2)+ (-1)^(2)+ 3^(2))=sqrt(14) ,`
`|vec(b)|=sqrt(1^(2)+3^(2) + 2^(2)) =sqrt(14).`
Let`theta" be the angle between "vec(a) and vec(b).` Then,
`sin theta =(|vec(a) xx vec(b)|)/(|vec(a)| |vec(b)|) =(3sqrt(19))/((sqrt(14)) (sqrt14))=3/14 sqrt(19).`


Discussion

No Comment Found

Related InterviewSolutions